Exercise 39

Show that f is continuous on $(-\infty, \infty)$.

$$
f(x)= \begin{cases}1-x^{2} & \text { if } x \leq 1 \\ \ln x & \text { if } x>1\end{cases}
$$

Solution

The function is continuous on $(-\infty, 1)$ because, assuming $a<1$,

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(1-x^{2}\right) \\
& =\lim _{x \rightarrow a} 1-\lim _{x \rightarrow a} x^{2} \\
& =1-\left(\lim _{x \rightarrow a} x\right)\left(\lim _{x \rightarrow a} x\right) \\
& =1-(a)(a) \\
& =1-a^{2} \\
& =f(a)
\end{aligned}
$$

The function is continuous on $(1, \infty)$ because, assuming $a>1$,

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} \ln x & =\ln \left(\lim _{x \rightarrow a} x\right) \\
& =\ln a \\
& =f(a)
\end{aligned}
$$

The function is continuous at $x=1$ because

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)=0
$$

Therefore, f is continuous on $(-\infty, \infty)$.

